(Q.P. Code: 16HS613								R1 (5						
	Re	g. No:			1.							-]			
		SIDDI B.	HART Tech	H IN	ar II Se	TE C mes PROI	OF EN (AU ter S BABII CE, H	GINE UTONO upple LITY EEE, N	CERIN OMOU ment & ST AE, CS	IG & JS) ary E ATIS SE, AC	TECI xami FICS GE &	HNOL nation CSIT)	OGY ns Ju	:: PUT ly-202:	TUR 2	
-	Гim	ne: 3 hours												Max	k. Marks	: 60
					(An	swer	all Fiv	ve Unit	ts 5 x	12 = 6	0 Ma	:ks)				
1	a b	State and Two carc probabilit two cards	prove ls are s y thatt drawr	Baye elect he su one	e's theor ed at ra m is ev after ot	rem . ndom en if (her w	from i) The vith re	UNI 10 car two c placgn	T-I ds nur ards a nent.	nbereo re dra	d 1 to wn to	10. Fii gether.	nd the (ii) T	he	L1 L2	6M 6M
2	a	A busines known tha is the prob hotel Z?	sman at 5%, bability	goes 4%, 8 7 that	to hotel 3% of th busine	s X, Y ne rooi ssman	7, Z, 2 ms in 1's roc	20%, 5 X,Y, 2 om hav	0%, 3 Z hote ving fa	0% of ls have ulty p	the tin e fault lumbi	me resj sy plun ng is a	pectiv ibings ssigne	ely. It is 5. What ed to	s L1	6M
	b	If X is a c Var(X +	ontinu k)=Va	ous r $r(X)$	andom (β) <i>Va</i>	variat ar(kX)	ble and $k^2 = k^2$	$\frac{1}{Var(X)}$	i const) T-11	ant, tł	nen pr	ove tha	at		L3	6M
3	a	Find the r	nean a	nd va	iriance of	of a N	Jorma	l distri	ibution	n in w	hich 7	% of i	items	are	L2	6M
	b	Out of 80 boys (b) 5	and 89 0 fami girls (% are lies v c) eit	e under vith 5 cl her 2 or	63 hildrei 3 boy	n each ys. As	, how sume o	many equal j	would probał	l you vilities	expect s for bo	to ha bys an	ve (a) 3 d girls.	L3	6M
4	a	Fit a Bino	mial d	istrib	oution to	the f	ollow 2 52	ing fre	equenc 3 58	y distr 4 32	ributic 5 16	on:			L4	8M
	b	Two dice once (ii)p	are thr (1 < <i>x</i> <	own < 5)	five tin	nes. Fi	nd the	e proba	ability	of get	ting 7	as sur	n i) at	least	L2	4M
5	a	In a big c information	ity 32. on sup	5 me port	n out o theconc	f 600 lusior	menv n that	vere fo maiori	ound t	o be s nen in	moke this c	rs.Doe itv are	s this smol	ers?	L4	6M
	b	The mean and 68.0 i population	s of tw nches 1 of S.	ro lar respe D 2.5	ge samj ectively.	oles of Can t	f sizes the sa	1000 mples	and 2 be reg	000 m arded	embe as dra	rs are (awn fro	57.5 in om the	nches e same	L5	6M
6	a	A Sample	of 64	stude	ents has	a mea	ın wei	Ol ight of	R 70 k	gms. (an th	is be re	egarde	ed as a	L4	6M .
. Y		sample fro	om a p ance.	opula	ation wi	th me	an we	ight 6	5 k.gn	is and	S.D 2	25 k.gn	ns wit	h level		
	b	A sample from a lar normal an	of 900 ge pop d its r	men ulati iean	nbers ha on of m is unkno	as a m ean 3. own fi	ean o .25 cn nd the	f 3.4 c n and S e 95%	ms an S.D 2. fiduci	d S.D 61 cm al lim	2.61 c s. If tl its of	ems. Is ne popu true m	the sa ulation ean	ample n is	L5	6M

Q.P. Code: 16HS613

UNIT-IV

7 a Three different machines are used for a production. On the basis of the outputs, L4 test whether the Machines are equally effective

Machine 1	Machine 2	Machine 3
10	9	20
5	7	16
11	5	10
10	6	4

b Define R.B.D

10M

2M

2M

10M

OR

L5 2M

L4

L5

L2

316

8 a Describe briefly the technique of ANOVA for Two-way classification. b Define L.S.D.

UNIT-V

9 **a** The following are the figures of defectives in 22 lots each containing 2000 rubber L6 **10M** belts:

425, 430, 216, 341, 225, 322, 280, 306, 337, 305, 356

402, 216, 264, 126, 409, 193, 326, 280, 389, 451, 420

Draw control chart for fraction defective and comment on the state of control of the Process.

- **b** write the causes of variations
- OR
- 10 a Ten samples each of size 5 drawn at regular intervals from a manufacturing L5 10M process. The sample means chart and their range are given below. Calculate the control limits in respect of mean chart and R- chart comment on the state of control.

Sample no.	1	2	3	4	5	6	7	8	9	10
Mean (\bar{x})	49	45	48	53	39	47	46	39	51	45
Range (R)	7	5	7	9	5	8	8	6	7	6

Write the constructions of mean, range. b

*** END ***

L52M